
SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

Kunal Dahiya 1 Ananye Agarwal 1 Deepak Saini 2 Gururaj K 3 Jian Jiao 3 Amit Singh 3 Sumeet Agarwal 1

Purushottam Kar 4 2 Manik Varma 2 1

Abstract
Deep extreme multi-label learning (XML) re-
quires training deep architectures that can tag
a data point with its most relevant subset of la-
bels from an extremely large label set. XML
applications such as ad and product recommen-
dation involve labels rarely seen during training
but which nevertheless hold the key to recom-
mendations that delight users. Effective utiliza-
tion of label metadata and high quality predic-
tions for rare labels at the scale of millions of
labels are thus key challenges in contemporary
XML research. To address these, this paper de-
velops the SiameseXML framework based on a
novel probabilistic model that naturally motivates
a modular approach melding Siamese architec-
tures with high-capacity extreme classifiers, and
a training pipeline that effortlessly scales to tasks
with 100 million labels. SiameseXML offers pre-
dictions 2–13% more accurate than leading XML
methods on public benchmark datasets, as well
as in live A/B tests on the Bing search engine,
it offers significant gains in click-through-rates,
coverage, revenue and other online metrics over
state-of-the-art techniques currently in produc-
tion. Code for SiameseXML is available at https:
//github.com/Extreme-classification/siamesexml

1. Introduction
Overview: Extreme Multi-label Learning (XML) involves
tagging a data point with its most relevant subset of labels
from an extremely large set. XML finds applications in myr-
iad of ranking and recommendation tasks such as product-
to-product (Mittal et al., 2021a), product-to-query (Chang
et al., 2020a), query-to-product (Medini et al., 2019), query-
to-bid-phrase (Dahiya et al., 2021), etc. Applications where
data points are endowed with short (3-10 tokens) textual

1Indian Institute of Technology Delhi 2Microsoft Research
3Microsoft 4Indian Institute of Technology Kanpur. Correspon-
dence to: Kunal Dahiya <kunalsdahiya@gmail.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

descriptions e.g., product title, search query are known as
short-text applications. These accurately model the ranking
and recommendation tasks mentioned above and have at-
tracted much attention recently (Chang et al., 2020a; Dahiya
et al., 2021; Medini et al., 2019; Mittal et al., 2021a).

XML with Label Metadata: Recent works such as (Mittal
et al., 2021a) have demonstrated that for applications where
labels (e.g., related items, bid-phrases) are also endowed
with textual descriptions, the use of such label metadata is
beneficial in accurately predicting rare labels for which very
little training data (often < 5 training points) is available
and hence, training data alone may not inform the classifier
model adequately. This is in sharp contrast with XML works
e.g., (Babbar & Schölkopf, 2019; Prabhu et al., 2018b; You
et al., 2019) that treat labels as identifiers devoid of descrip-
tive features. Other forms of label metadata such as label
hierarchies could also be used but this paper focuses on
label text as a readily available form of label metadata.

Beyond Siamese Architectures: The presence of textual
descriptions on both data-point and label sides invites the
application of Siamese models (Chen et al., 2020; Schroff
et al., 2015; Yeh et al., 2017; Xiong et al., 2020) that use
a shared architecture to embed both data-points and labels
such that related data-points and labels are embedded in
close proximity. However existing works on Siamese mod-
els focus largely on zero-shot cases i.e. predicting hitherto
unseen labels. While zero-shot cases present an important
use-case in several applications, an equally critical use-case
in ranking and recommendation scenarios is that of few-shot
labels which are indeed seen during training but perhaps
rarely. Note that the prediction problem for few-shot la-
bels can be turned into a classification problem rather than
a mere retrieval problem. This presents opportunities for
models beyond those that are purely Siamese.

Contributions: This paper presents the SiameseXML
framework that generalizes existing Siamese models in few-
shot scenarios by melding Siamese architectures with per-
label extreme classifiers at the scale of 100 million labels.
The SiameseXML framework is a) based on a novel proba-
bilistic model that naturally motivates a modular approach
melding Siamese networks with extreme classifiers and b)
offers generalization bounds for its Siamese module that
are independent of the number of labels L based on a novel

https://github.com/Extreme-classification/siamesexml
https://github.com/Extreme-classification/siamesexml

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

Maurey-type sparsification lemma that may be of indepen-
dent interest. An implementation of SiameseXML could
c) scale to tasks with 100M labels while still offering pre-
dictions within milliseconds and d) offer predictions 2-13%
more accurate than leading XML methods on benchmark
datasets as well as improve prediction quality by 11% when
matching user queries to advertiser bid phrases.

2. Related Works
Extreme Multi-label Learning (XML): Much prior work
has focused on designing classifiers for fixed features such
as bag-of-words or else pre-trained features such as FastText
(Joulin et al., 2017). Representative works include (Agrawal
et al., 2013; Babbar & Schölkopf, 2017; 2019; Bhatia
et al., 2015; Jain et al., 2016; 2019; Jasinska et al., 2016;
Khandagale et al., 2019; Mineiro & Karampatziakis, 2015;
Niculescu-Mizil & Abbasnejad, 2017; Prabhu & Varma,
2014; Prabhu et al., 2018a;b; Tagami, 2017; Xu et al., 2016;
Yen et al., 2016; Prabhu et al., 2020). However, recent
works offer superior accuracy by using deep learning algo-
rithms to jointly learn task-dependent features and classi-
fiers, even at the scale of millions of labels. These include
XML-CNN (Liu et al., 2017), AttentionXML (You et al.,
2019), MACH (Medini et al., 2019), Astec (Dahiya et al.,
2021), X-Transformer (Chang et al., 2020a), XT (Wyd-
much et al., 2018), APLC-XLNet (Ye et al., 2020), and
LightXML (Jiang et al., 2021) that respectively use CNN,
attention, MLP, bag-of-embeddings, and transformer-based
architectures.

Label Metadata: Recent works have demonstrated that
incorporating label metadata can significantly improve
accuracy even compared to deep learning approaches
that consider labels as feature-less identifiers e.g. Astec
(Dahiya et al., 2021). Prominent among them are the X-
Transformer (Chang et al., 2020a) and DECAF (Mittal et al.,
2021a) that make use of label text and ECLARE (Mittal
et al., 2021b) and GalaXC (Saini et al., 2021) that make use
of label graphs. SiameseXML empirically outperforms all
these methods on a variety of benchmark datasets.

The X-Transformer makes use of label text to learn interme-
diate representations and learns a vast ensemble of classifiers
based on the powerful transformer architecture. However,
training multiple transformer models requires a rather large
array of GPUs and the method has not been shown to scale
to several millions of labels. On the other hand, DECAF
uses label text embeddings as a component in its 1-vs-all
label classifiers. Although relatively more scalable, DECAF
still struggles with several millions of labels. The method
crucially relies on clustering labels into L̂ meta-labels and
seems to demand progressively larger and larger values of L̂
as the number of labels L grows, for example L̂ ≈ 130K for
L ≈ 1M labels. Since DECAF requires meta-label represen-

tations corresponding to all L̂ meta labels to be recomputed
for every mini-batch, it makes the method expensive for
larger datasets. Taking a small value, say L̂ ≈ 8K improves
speed but hurts performance. SiameseXML instead uses
direct label-text embeddings to offer better scalability and
accuracy than DECAF’s meta-label based approach.

Siamese Networks: Siamese networks typically learn data
point and label embeddings by optimizing the pairwise con-
trastive loss (Chen et al., 2020; Xiong et al., 2020) or the
triplet loss (Schroff et al., 2015; Wu et al., 2017) on a variety
of pre-training tasks such as Cloze task and related pair pre-
diction (Chang et al., 2020b). However, these approaches
focus mainly on zero-shot labels and neglect opportunities
presented by few-shot labels. SiameseXML shows that for
few-shot scenarios where labels are not entirely unseen but
maybe just rarely seen, Siamese architectures can be signifi-
cantly empowered using extreme classifiers.

Negative Mining: Performing optimizations on Siamese
models at extreme scales can be computationally prohibitive
as for N data points and L labels, a per-epoch cost of re-
spectively O (NL) and O

(
NL2

)
is incurred for pairwise

and triplet losses. To avoid this, it is common to train a data
point with respect to only a small, say O (logL)-sized, sub-
set of labels which brings training cost down toO (N logL)
per epoch. This subset typically contains all positive labels
of the data point (of which there are typically O (logL)
in several applications with large L) and a carefully cho-
sen set of O (logL) negative labels which seem the most
challenging for this data point. There is some debate as to
whether the absolutely “hardest” negatives for a data point
should be considered or not (Wu et al., 2017; Xiong et al.,
2020), especially in situations where missing labels abound
(Jain et al., 2016), or whether considering multiple hard
negatives is essential. For instance, (Schroff et al., 2015;
Harwood et al., 2017) observed that using only the “hardest”
of negatives could lead to bad local minima or collapsed
models. Nevertheless, such negative mining has become a
cornerstone for training classifier models at extreme scales.
Although relatively well-understood for approaches that
use fixed features e.g. (Jain et al., 2019), negative mining
becomes an interesting problem in itself when features get
jointly learnt since the set of challenging negatives for a data
point may keep changing as the feature representation of
that data point changes across epochs. Several approaches
have been proposed to address this. Online in-batch ap-
proaches look for challenging negative labels for a data
point within the positive labels of other data points within
the mini-batch (Faghri et al., 2018; Guo et al., 2019; Chen
et al., 2020; He et al., 2020). Although computationally
cheap, as the number of labels grows, it becomes more and
more unlikely that the most useful negative labels for a data
point would just happen to get sampled within its mini-batch.
Thus, at extreme scales, either negative mining quality suf-

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

fers or else mini-batch sizes have to be enlarged which hurts
scalability (Chen et al., 2020; Dahiya et al., 2021). Offline
approaches that utilize approximate nearest neighbor search
(ANNS) structures have also been studied. This can either
be done once if using pre-trained features (Luan et al., 2020)
or else periodically if using learnt features (Xiong et al.,
2020; Harwood et al., 2017). However, repeated creation of
ANNS structures can be expensive in itself.

3. The SiameseXML Framework
This section develops the SiameseXML framework based
on a novel probabilistic model that naturally motivates a
modular architecture melding Siamese models with extreme
classifiers. The framework is developed as an extension of
the DeepXML framework (Dahiya et al., 2021).

Notation: Let {{xi,yi}Ni=1, {zl}Ll=1} be a multi-label train-
ing set with L labels and N data points. xi, zl ∈ X denote
representations of the textual descriptions of data point i and
label l respectively. For each i ∈ [N], yi ∈ {−1,+1}L de-
notes the ground truth label vector for data point i such that
yil = +1 if label l is relevant to data point i else yil = −1.
SD−1 denotes the D-dimensional unit sphere.

Probabilistic Model: Let Eθθθ : X → SD−1 denote a pa-
rameterized embedding model with parameters θθθ ∈ΘΘΘ. The
first postulate below posits that “extreme” 1-vs-all (OvA)
classifiers suffice to solve the XML problem. This postulate
is widely accepted by 1-vs-all methods popular in literature,
e.g., (Babbar & Schölkopf, 2019; Chang et al., 2020a; Jain
et al., 2019; Prabhu et al., 2018b; Yen et al., 2017).

Postulate 1 (OvA sufficiency). For some known (joint) like-
lihood function PL : {−1,+1}L × [−1, 1]L → [0, 1], un-
known parameters θθθ∗ ∈ ΘΘΘ, and per-label extreme classifiers
i.e. w∗l ∈ SD−1 for all l ∈ [L], we have

P [y |xi, {w∗l } , θθθ∗] = PL

(
y,
{
Eθθθ∗(xi)>w∗l

}L
l=1

)
Although normalizations e.g. Eθθθ∗(x),w∗l ∈ SD−1 simplify
the presentation, they are neither essential to the develop-
ment of the SiameseXML framework nor its analysis. This
motivates the following negative log-likelihood (NLL) ex-
pression for MLE-based estimation of θθθ∗ and {w∗l }

L
l=1.

L(θθθ, {wl})
def
= − 1

N

N∑
i=1

lnPL

(
y,
{
Eθθθ∗(xi)>w∗l

}L
l=1

)
(1)

Equation (1) subsumes objectives used by 1-vs-all methods
in literature and but is prohibitive to optimize naively at
extreme scales, requiring Ω (NLD) time to perform even
a single gradient descent step. To remedy this, a novel
postulate is introduced below that posits that for any label
l ∈ [L], if its label-text zl is presented as a data point, then

the label l itself is likely to be found relevant. To formalize
this notion, let pl : {−1,+1}×[−1,+1]→ [0, 1] satisfying
pl(+1, v) + pl(−1, v) = 1 for every v ∈ [−1,+1] be some
point likelihood functions. For example, pl could be the
marginals of the joint likelihood function PL.

Postulate 2 (Label Self Proximity). For every label l ∈ [L],
its label text zl ∈ X satisfies P [yl = +1 | zl,w∗l , θθθ∗] =
pl
(
+1, Eθθθ∗(zl)>w∗l

)
≥ pl(+1, 1)− εl for some εl � 1.

Note that Postulate 2 always holds for some εl ≤ 1. How-
ever, in applications where data points and labels reside in
similar spaces, Postulate 2 can be expected to hold with
small values of εl � 1. This is especially true of product-to-
product recommendation tasks where data points and labels
come from the same universe and a product can be rea-
sonably expected to be strongly related to itself. However,
this is also expected in other applications enumerated in
Section 1 such as product-to-query and query-to-bid-phrase
where the textual representations of related data point-label
pairs, i.e., where yil = 1, convey similar intent.

A useful special case of the above discussion is when the
joint likelihood decomposes over point likelihoods, i.e.,

PL

(
y,
{
Eθθθ∗(xi)>w∗l

}L
l=1

)
=

L∏
l=1

pl
(
yil, Eθθθ∗(xi)>w∗l

)
,

giving us a simplified NLL expression

L(θθθ, {wl})
def
= − 1

NL

N∑
i=1

L∑
l=1

ln pl
(
yil, Eθθθ(xi)>wl

)
(2)

Decomposable likelihoods make it convenient to perform
independent training of classifiers which is critical when
scaling 100M labels. However, neither the SiameseXML
framework nor its analysis demands decomposable likeli-
hoods. Postulates 2 is key to the modular nature of Siame-
seXML since it immediately yields the following.

Lemma 1. If pl(+1, ·) is monotonically increasing and has

an inverse that is Clip-Lipschitz over the range set Rp
def
=

{pl(+1, v) : v ∈ [−1,+1]}, then for all l ∈ [L] and x ∈ X ,∣∣Eθθθ∗(x)>w∗l − Eθθθ∗(x)>Eθθθ∗(zl)
∣∣ ≤√2Clip · εl,

where εl is the label self-proximity parameter from Postu-
late 2. If the joint log-likelihood function lnPL is (q,Dlip)-
Lipschitz for some q ≥ 1 i.e. for every label vector
y ∈ {−1, 1}L and any score vectors s, s′ ∈ [−1, 1]L, we
have |lnPL(y, s)− lnPL(y, s′)| ≤ Dlip · ‖s− s′‖q , then

L(θθθ∗, {Eθθθ∗(zl)}) ≤ L(θθθ∗, {w∗l }) +Dlip ·
√

2Clip · εeff,

where εeff =
∥∥[√ε1, . . . ,√εL]∥∥2

q
. For the special case

of decomposable likelihoods, this result can be clarified

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

further: if the point log-likelihood functions ln pl(+1, ·)
and ln pl(−1, ·) are both Dlip-Lipschitz over the interval
[−1,+1], then we have

L(θθθ∗, {Eθθθ∗(zl)}) ≤ L(θθθ∗, {w∗l }) +Dlip ·
√

2Clip · ε̄,

where ε̄ def
= 1

L

∑L
i=1 εl is the avg label self-proximity value.

All proofs and additional details are presented in the sup-
plementary material1. Lemma 1 shows that label text em-
beddings are capable of acting as a stand-ins for the 1-vs-all
classifiers. This in turn motivates a notion of incomplete
NLL defined over the embedding model parameters alone:

L1(θθθ)
def
= − 1

N

N∑
i=1

lnPL

(
y,
{
Eθθθ(xi)>Eθθθ(zl)

}L
l=1

)
(3)

Note that the expression for Ll naturally suggests a Siamese
architecture as it requires learning a shared embedding
model Eθθθ to embed both data point as well as label text,
so that L1 is minimized. SiameseXML crucially exploits
this to bootstrap the learning process. Given a solution, say
θ̂θθ, that (approximately) optimizes L1, the 1-vs-all extreme
classifiers are now reparameterized as wl = N(Eθ̂θθ(zl)+ηηηl),
where N is the normalization operator, i.e., N : v 7→
v/ ‖v‖2 ∈ SD−1 and ηηηl ∈ RD are “refinement” vectors,
learnt one per label and trainable using another incomplete
NLL expression, this time over the refinement vectors alone.

L2({ηηηl})
def
= − 1

N

N∑
n=1

lnPL

(
y,
{
Eθ̂θθ(xi)

>wl

}L
l=1

)
(4)

The following result shows that this multi-stage learning
process does yield embedding model parameters and 1-vs-
all classifiers with bounded suboptimality with respect to
the original NLL function L from Equation (1).

Lemma 2. Suppose θ̂θθ is obtained by (approximately) opti-
mizing L1 with δopt being the suboptimality, i.e., L1(θ̂θθ) ≤
minθθθ∈ΘΘΘ L1(θθθ) + δopt and ŵl are created using refinement
vectors η̂ηηl obtained by (approximately) optimizing L2 in
a monotonic manner i.e. L2({η̂ηηl}) ≤ L2({0}), then
L(θ̂θθ, {ŵl}) ≤ L(θθθ∗, {w∗l })+Dlip ·

√
2Clip · ε+δopt, where

ε is the sub-optimality (either εeff or ε̄) in Lemma 1.

The 4 Modules: The above discussion motivates a modular
framework adopted by SiameseXML that specializes the
more general DeepXML framework (Dahiya et al., 2021).
Module I (Siamese Module): Learn an an intermediate
model θ̂θθ

0
for a Siamese architecture Eθθθ to embed data point

and label texts. To do so, a objective such as the incomplete
NLL L1 or else the triplet loss popular in Siamese training

1Link to Supplementary Material:
http://manikvarma.org/pubs/dahiya21b-supp.pdf

ℰ𝜽 𝐱 = 𝔑 𝑓𝐄 𝐱 + 𝑔𝐑 𝑓𝐄 𝐱

𝑓𝐄 𝐱 = 𝔑 GeLU 𝐄𝐱

𝑔𝐑 𝐯 = GeLU 𝐑𝐯
Text Embedding Block

ℰ𝜽

…

…
𝐑

GeLU

Norm

Norm

GeLU

𝐄𝐱

ℰ𝜽 𝐱
ො𝐱𝑖

𝐄𝐱𝑖

of STOP

List

Go

Players
ℰ𝜽

Data point Embedding

ො𝐱𝑖 = ℰ𝜽 𝐱𝒊

OvA Label Classifier

𝐰𝑙 = 𝔑 ℰ𝜽 𝐳𝑙 + 𝛈𝑙

𝛈𝑙

𝐰𝑙

International

Federation

ℰ𝜽

Norm

Refinement
Vector

Siamese
Module

Extreme
Module

𝐄𝐳𝑙

Go

Figure 1: SiameseXML’s embedding and classifier creation
architectures. (best viewed under magnification).

literature is minimized.
Module II (Negative Mining Module): MineO (logL) hard
negative labels for each data point based on embeddings
learned in Module-I.
Module III (Transfer Module): Reparameterize per-label
extreme classifiers as wl = N(Eθ̂θθ(zl) + ηηηl).
Module IV (Extreme Module): Learn the refinement vectors
ηηηl (and implicitly the extreme classifiers wl) by minimizing
an objective such as the incomplete NLL L2 or else some
classification loss like BCE. However, only terms corre-
sponding to positive and mined negative labels from Module
II are used for any data point. Optionally, the embedding
model θθθ0 can be jointly fine-tuned as well.

Recovering Siamese Models from SiameseXML: Tradi-
tional pure Siamese models emerge as special cases of the
above framework in a straightforward manner if we termi-
nate the pipeline after completion of Module I itself. How-
ever, experimental results in Section 6 establish that the
additional modules that enable learning of extreme classi-
fiers on top of the Siamese model learnt in Module I greatly
increase both model capacity and accuracy for XML tasks in
ranking and recommendation that present few-shot labels.

4. Implementation Details
Various architectures and training objectives can be used
to instantiate the various modules of SiameseXML. In the
following, we present an implementation based on an in-
expensive bag-of-embedding based encoder that has been
demonstrated (Dahiya et al., 2021; Mittal et al., 2021a;b;
Saini et al., 2021) to be well-suited to short-text applica-
tions and offer extremely low latency that is attractive for
real-time ranking and recommendation applications.

Architecture Details: SiameseXML uses sparse TF-IDF
vectors as input representations for both data-point and la-
bel texts. If V is the number of tokens in the vocabulary,
then X = RV and xi, zl ∈ RV . The results of Section 3
are agnostic to this choice. SiameseXML uses a frugal
embedding architecture E parameterized as θθθ = {E,R}

http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

where E = RD×V denotes D-dimensional embeddings
et ∈ RD learnt for each token t ∈ [V] in the vocab-
ulary and R ∈ RD×D represents a residual layer. Ini-
tially, an “intermediate” bag-of-embeddings embedding
fE(x) = N(GeLU(Ex)) is computed (N is the normal-
ization operator, i.e., N : v 7→ v/ ‖v‖2) and then passed
through the residual layer to get the “final” embedding Eθθθ(x)
(see Figure 1). Similar architectures have been demonstrated
to work well on short text applications with millisecond la-
tencies (Dahiya et al., 2021; Mittal et al., 2021a).

Training Objectives: SiameseXML uses a decomposable
likelihood model (see (2)) and incomplete NLL with respect
to the following point-likelihood functions.

pl(+1, v) =
c · exp (d · v)

exp(d)
, pl(−1, v) = 1− pl(+1, v) (5)

The scaling constants c, d control the aggressiveness of
the NLL function. For c ∈ (0, 1), d ≥ 1, the inverse
of pl(+1, ·) exists and is exp(2d)

cd -Lipschitz over Rp, and
ln pl(1, ·), ln pl(−1, ·) are respectively d and cd

1−c -Lipschitz
over [−1,+1]. These calculations are detailed in the sup-
plementary material. The corresponding training objec-
tives L1,L2 contain NL terms and performing optimiza-
tion naively takes Ω (NDL) time for a single gradient step
which is prohibitive since N,L ≥ 106, D ≥ 102. To avoid
this, Modules IV optimizes L2 in O (ND logL) time using
negatives mined in Module II whereas Module I does the
same for L1 using in-batch online negative mining.

Module I: In this module, parameters θθθ for the Siamese
model Eθθθ(·) are learnt. Whereas it is common for in-batch
mining strategies to create batches over data points and mine
negative labels for a data point within positive labels of other
data points in its mini-batch (Faghri et al., 2018; Guo et al.,
2019; Chen et al., 2020; He et al., 2020), this was found to
neglect rare labels and a disproportionate number of mined
negatives ended up being popular labels. This not only
starved rare labels of gradient updates, but also starved data
points of the most useful negative labels which could be rare.
SiameseXML mitigates this problem by creating batches
over labels and mining negative data points instead (see
Fig. 2). The Siamese nature of Module I allows such a
mirrored strategy seamlessly. Label mini-batches of size
B were created by sampling labels from a skewed label
distribution (specifically the label distribution raised to the
power 0.45) similar to (Mikolov et al., 2013). This choice
was found to offer healthy representation to both popular and
rare labels. For each label l in a batch, a single positive data
point was sampled uniformly at random and κ = 1–5 hard
negative data points were selected from the pool of B − 1
positive data points for other labels in the batch. However,
offline hard-negative mining can also have been used (please
see the supplementary material for a discussion).

20 40 60 80 100
Epochs

25.0

25.5

26.0

26.5

27.0

27.5

P@
1

P@1 with varying label distributions in M-I | LF-WikiSeeAlsoTitles-320K
power=0
power=0.45
power=1

Figure 2: P@1 on LF-WikiSeeAlsoTitles-320 when label
mini-batches are created in Module I using the label dis-
tribution raised to various powers. power = 0 gives the
uniform distribution over labels whereas power = 1 recovers
the (heavy-tailed) label distribution. Creating data-point
mini-batches offers a label distribution similar to power = 1.

Multiple Label Representations: Although the label-text
label representation itself offers superior accuracies, Siame-
seXML uses multiple label representations to further aug-
ment the label representation. We note that the framework
in Section 3 can readily accommodate such augmented
representations. For each label l ∈ [L], the label embed-
ding Eθθθ(zl) is used as well as the label centroid defined as
vl

def
= N

(
1
|Rl|

∑
i∈Rl

fÊ(xi)
)

where Rl
def
= {i | yil = 1}

is the set of data points for which label l is relevant. Since
computing vl may be expensive, especially for popular la-
bels, an estimate v̂l computed using two randomly sampled
positive data points of that label was used instead.

Training Objective: For any label l ∈ [L], let il denote the
positive data point sampled for it, v̂l denote its centroid
estimate, N̂ b

l denote the set of κ in-batch hard negatives

identified for that label and let Sbl
def
= {il}∪N̂ b

l . The partial
NNL objective L1 as given by the point likelihood functions
in (5) was augmented as follows to incorporate the multiple
label representations and used to train Module I.

L̂1(θθθ)
def
= − β

L(κ+ 1)

L∑
l=1

∑
i∈Sl

ln pl
(
yil, Eθθθ(zl)>Eθθθ(xi)

)
− (1− β)

L(κ+ 1)

L∑
l=1

∑
i∈Sb

l

ln pl
(
yil, v̂

>
l Eθθθ(xi)

)
) (6)

A fixed value of β = 0.7 was used and not tuned. (6)
trains both the label text embedding and the label centroid
to approach the embedding of a related data point and offers
improvements over using label-text embeddings alone.

Module II: Let θθθ0 =
{
Ê, R̂0

}
be the parameters learnt

by Module I by minimizing (6). To accelerate training us-
ing L2 in Module IV, SiameseXML mines O (logL) hard
negative labels for each data point. First, using a label-
correlation operator M ∈ RL×L similar to one used in (Mit-

http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

tal et al., 2021b) (see supplementary material for details), the
intermediate label embeddings were linearly transformed
to obtain z̃l =

∑
m∈[L]Mlm · fÊ(zm). Incorporating label

correlations in this inexpensive manner offered mild ben-
efits in prediction accuracy. Three small-world (HNSW)
graphs (Malkov & Yashunin, 2016) were then created: a)
ANNSz over the transformed intermediate embeddings of
the label text, i.e., z̃l for label l; b) ANNSµ over label
centroids vl as defined earlier; and c) ANNSx over the in-
termediate embeddings of the data points fÊ(xi). Negative
mining was done using fÊ(·) and not Eθθθ0(·) to align train-
ing and testing since Ê remains frozen through Module IV
whereas E get modified in Module IV as the residual layer R
gets fine-tuned jointly with the 1-vs-all classifiers. The three
graphs were then queried a cost ofO(ND logL) (time com-
plexity derivation in the supplementary material) to generate
O (logL) ≤ 500 negative labels for each data point i with
three components: a) N z

i =
{
l | i ∈ ANNSz(fÊ(xi))

}
b) N µ

i =
{
l |vl ∈ ANNSµ(fÊ(xi))

}
, and c) N x

i ={
l | yjl = 1, j ∈ ANNSx(fÊ(xi))

}
.

Module III: The extreme classifiers are initialized using the
transformed label embeddings i.e. wl = N(z̃l + ηηηl).

Module IV: SiameseXML jointly trains the refinement vec-
tors ηηηl and fine-tunes the residual layer R (token embed-
dings Ê learnt in Module I remain frozen) restricted to
the set Si

def
= Pi ∪ N̂i for each data point i ∈ [N] where

Pi = {l | yil = 1} is the set of positive labels for data point
i and N̂i is the set of κ · |Pi| hardest negatives from the label
shortlist N̂ z

i ∪ N̂
µ
i ∪ N̂ x

i obtained in Module-II (κ = 2 –
5). Recall that data points in XML applications typically
have O (logL) positive labels i.e. |Pi| ≤ O (logL). Since∣∣∣N̂i∣∣∣ ≤ O (logL) by design, we have |Si| ≤ O (logL).
The following objective, that contains only O (N logL)
terms, was minimized using mini-batches over data points
and the Adam optimizer (Kingma & Ba, 2015)

L̂2({ηηηl},R)
def
= − 1

N logL

N∑
n=1

∑
l∈Si

ln pl
(
yil, Eθ̂θθ(xi)

>wl

)
to obtain the 1-vs-all classifiers Ĥ = [η̂ηη1, . . . , η̂ηηL] and a
fine-tuned embedding model θ̂θθ = {Ê, R̂}.

Alternate Training Objectives: Experiments in the supple-
mentary material show SiameseXML using alternate loss
functions (e.g. triplet loss for Module I and BCE loss for
Module IV) also offers stable performance. However, the
triplet loss is unsuitable for Module IV whereas BCE is
ill-suited for Module I. In contrast, the (incomplete) NLLs
created using the point likelihood functions pl offer the con-
venience of using a single formulation across the modules.

Asynchronous distributed training on 100M labels: Op-
timizing L̂2 on a single GPU was infeasible for the largest

dataset Q2B-100M given the Ω (LD) memory footprint
needed to train all L 1-vs-all classifiers. Multiple GPUs
were deployed to speed up training by partitioning the 1-
vs-all classifiers {wl} into subsets {wl}1, . . . {wl}g, each
subset being trained on a separate GPU. As R is jointly
trained in this module and shared across labels, this brought
up synchronization issues. SiameseXML eliminated the
need for a high-bandwidth connection between GPUs and
effected entirely asynchronous training on completely dis-
connected machines by learning a separate residual Rj for
each label subset using the slightly modified objective

L̂2
j ({ηηηl},Rj)

def
= − 1

NL

N∑
n=1

∑
l∈Sj

i

ln pl

(
yil, Ej

θ̂θθ
(xi)

>wl

)
.

where j is the id of the GPU, Sji = Si ∩ {wl}j , and Ej
θ̂θθ
(xi)

is the embedding function using Rj as the residual. Using
L̂2
j instead of L̂2 was found to yield comparable accuracy.

Log-time Prediction: Given a test point x ∈ RV , iter-
ating over all L 1-vs-all classifiers takes O (DL) time
which is prohibitive when L ≈ 108, D ≥ 102. Siame-
seXML makes use of the ANNS graphs from Module-
II to accelerate inference in 3 steps: a) extract the in-
termediate fÊ(x) and final Eθ̂θθ(x) embeddings for the
test point; b) shortlist O (logL) of the most relevant la-
bels as S =

{
l | l ∈ ANNSz(fÊ(x)) ∪ ANNSµ(fÊ(x))

}
∪{

l | yjl = 1, j ∈ ANNSx(fÊ(x))
}

; and finally c) evaluate
1-vs-all classifiers for only the shortlisted labels to get the
scores ŷl = α ·w>l Eθ̂θθ(x) + (1− α) · (fÊ(zl) + vl)

>Eθ̂θθ(x)
if label l ∈ S and ŷl = −∞ otherwise, where α ∈ [0, 1] is a
hyper-parameter set via validation. This allowed predictions
in O

(
D2 +D logL

)
time (derivation in the supplementary

material) and in practice, translated to around 12 millisec-
onds on a CPU even on the dataset with 100M labels.

5. Generalization Bounds
Generalization bounds for multi-label problems incur either
an explicit dependence on the number of labels L (Zhang,
2004) or else an implicit one via regularization constants
or norms of 1-vs-all classifiers (Bartlett et al., 2017; Yu
et al., 2014). However, Module I of SiameseXML learns
parameters θθθ that are of size independent ofL, and yet yields
a fully functional classifier model, namely ŵ0

l = E
θ̂θθ
0(zl)

owing to Lemma 1. This presents an opportunity to establish
bounds that avoid any dependence on L, explicit or implicit.
Theorem 3 (Part I) establishes such a result.

On the other hand, contemporary generalization bounds for
deep networks (Bartlett et al., 2017; Golowich et al., 2018;
Long & Sedghi, 2020; Wei & Ma, 2019) do not take label
metadata into account and thus, their results do not directly
apply to Siamese architectures. Moreover, such an applica-
tion is expected to yield bounds for Module I that depend on

http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

the Frobenius norm of Z = [z1, . . . , zL] ∈ RV×L that can
scale as Ω(

√
L). This is because the proof techniques such

as those used in (Bartlett et al., 2017) rely on “empirical”
covering numbers which need only cover a bounded set
and can hence use weaker inequalities such as the Chevy-
shev’s inequality within the standard “empirical” Maurey
lemma. To avoid a dependence on L, Theorem 3 instead
relies on uniform covers of (infinite) compact subsets. The
Chevyshev’s inequality no longer suffices and a novel uni-
form Maurey-type sparsification lemma is established using
Bernstein bounds over Hilbert spaces.

Theorem 3 depends on the token embeddings E as√
‖E‖∞,1 ‖E‖1,1 ≤ ‖E‖1,1 whereas (Bartlett et al., 2017)

incur a dependence on the mixed norm
∥∥E>∥∥

2,1
(see below

for notation as well as note that (Bartlett et al., 2017) would
have styled the matrix E as E>). This indicates a subop-
timality of upto

√
D. However, in XML settings, small

D ≈ 100, i.e.,
√
D ≈ 10 are common which suggests that

Theorem 3 presents a favorable trade-off as it avoids a depen-
dence on L, e.g. via ‖Z‖F which could scale as Ω

(√
L
)

,

in favor of an extra
√
D factor. Theorem 3 (Part II) extends

to the model learnt in Module IV that incorporates extreme
classifiers. This bound is no longer independent of L but
depends on it explicitly in a weak manner via logL and
implicitly via the L1,1 norm of the refinement vector ma-
trix H = [ηηη1, . . . , ηηηL] ∈ RD×L. It would be interesting to
tighten these bounds, for instance using techniques from
(Long & Sedghi, 2020; Golowich et al., 2018).

Notation: For a label vector y ∈ {−1,+1}L, let Py :=
{l : yl = +1} and Ny := {l : yl = −1} denote the sets of
positive and negative labels respectively. Given a score
vector s = [s1, . . . , sL] ∈ [−1, 1]L, let πs ∈ Sym([L])
be the permutation that ranks labels in decreasing order
of their scores according to s i.e. sπs(1) ≥ sπs(2) ≥
We will also let π+

s ∈ Sym(Py) denote the permutation
that ranks the positive labels in decreasing order of their
scores according to s i.e. π+

s (t) ∈ Py for all t ∈ |Py|.
For any A ∈ Rm×n, ‖A‖σ := supx∈Rn

‖Ax‖2
‖x‖2

denotes its
spectral norm. For p, q ∈ [1,∞], define the mixed norm
‖A‖p,q :=

∥∥∥[‖A1,:‖p , ‖A2,:‖p , . . . , ‖Am,:‖p
]∥∥∥
q
. This

first takes the p-th norm over all rows, then the q-th norm.
To be sure, this is slightly different from popular convention
that takes norms over columns first. However, this change of
convention avoids clutter due to repeated transpose symbols.

Definitions: The prec@k loss counts the fraction of top
ranks not occupied by relevant labels ℘k(s,y)

def
= 1 −

1
k

∑k
t=1 I {πs(t) ∈ Py}. Given a margin γ > 0, define

the γ-ramp function as rγ(v)
def
= min

{
max

{
v
γ , 0
}
, 1
}

.

For k ∈ N, let the surrogate prec@k loss be `prec
γ,k (s,y)

def
=

1 − 1
k

∑min{k,|Py|}
t=1 rγ

(
sπ+

s (t) −maxl′∈Ny sl′
)

. For any

data point x ∈ RV and model θθθ, denote sθθθ(x) =

[sθθθ1, . . . , s
θθθ
L]> ∈ RL, where sθθθl

def
= Eθθθ(x)>Eθθθ(zl) are scores

assigned to various labels for this data point using the
Siamese model obtained after Module I. For models ob-
tained after Module IV that incorporate extreme classi-
fiers H = [ηηη1, . . . , ηηηL], scores are redefined as sθθθ,Hl

def
=

Eθθθ(x)>wl. For training data sampled as (xi,yi) ∼ D, i ∈
[N], the surrogate empirical risk for a model θθθ is ˆ̀

N (θθθ)
def
=

1
N

∑N
i=1 `

prec
γ,k (sθθθ(xi),yi). The population prec@k risk for

a model θθθ is ℘k(θθθ)
def
= E

(x,y)∼D

[
℘k(sθθθ(x),y)

]
. `(θθθ,H) and

ˆ̀
N (θθθ,H) are similarly defined using sθθθ,Hl instead.

Theorem 3. (Part I) If θ̂θθ
0

is the model obtained after Mod-
ule I and ‖xi‖0 , ‖zl‖0 ≤ s, then with prob. 1− δ,

℘k(θ̂θθ
0
) ≤ ˆ̀

N (θ̂θθ
0
) +

1

γ
· P ln(N)√

N
+

√
ln 1

δ

N
,

where P = O
(√

D ln(D)
√
RR∞R

R
1 +
√
s ln(DV)RRσ

√
RE∞R

E
1

)
and RE1 = ‖Ê‖1,1, RE∞ = ‖Ê‖∞,1, RR1 = ‖R̂0‖1,1, RR∞ = ‖R̂0‖∞,1, RRσ = ‖R̂0‖σ

(Part II) If
{
θ̂θθ, Ĥ

}
is the model after Module IV (Ê from

Module I, R̂, Ĥ learnt in module IV). Then w.p. 1− δ,

℘k(θ̂θθ, Ĥ) ≤ ˆ̀
N (θ̂θθ, Ĥ) +

1

γ
· Q ln(N)√

N
+

√
ln 1

δ

N
,

where Q = P +O
(

ln(DL)
√
RC∞R

C
1

)
, RC1 = ‖Ĥ‖1,1, RC∞ = ‖Ĥ‖1,∞

and RR1 = ‖R̂‖1,1, RR∞ = ‖R̂‖∞,1, RRσ = ‖R̂‖σ.

The supplementary material contains a more relaxed discus-
sion of related work and a proof for Theorem 3.

6. Experiments
Datasets: Multiple benchmark short-text and long-text
datasets for product-to-product recommendation as well
as predicting related Wikipedia articles were considered.
The datasets and provenance details thereof can be found on
the Extreme Classification Repository (Bhatia et al., 2016).
Results are also reported on proprietary datasets with up to
100 million labels for matching user queries to advertiser bid
phrases (Q2BP-4M, Q2BP-40M, and Q2BP-100M). These
were created by mining click logs of the Bing search en-
gine where a query was treated as a data point and clicked
advertiser bid phrases became its labels. The Q2BP-40M
and Q2BP-100M datasets were created by mining logs of
different streams, whereas Q2BP-4M was created by ran-
domly sampling 10% labels from Q2BP-40M to allow ex-
perimentation with less scalable methods. Please refer to
the supplementary material for a discussion on the datasets.

http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

Table 1: Short-text datasets: SiameseXML and the Siame-
seXML++ variant are both significantly more accurate than
leading deep XML methods. Results are presented only for
methods that converged within the timeout.

Method PSP@1 PSP@3 PSP@5 P@1 P@5 Training
Time (hr)

LF-AmazonTitles-131K

SiameseXML 35.44 40.7 45.98 40.98 20.09 0.94
SiameseXML++ 35.8 40.96 46.19 41.42 21.21 1.13
ECLARE 33.51 39.55 44.7 40.74 19.88 2.16
GalaXC 32.5 38.79 43.95 39.17 19.49 0.42
DECAF 30.85 36.44 41.42 38.40 18.65 2.16
X-Transformer 21.72 24.42 27.09 29.95 13.07 64.40
Astec 29.22 34.64 39.49 37.12 18.24 1.83
AttentionXML 23.97 28.60 32.57 32.25 15.61 20.73
LightXML 25.67 31.66 36.44 35.6 17.45 71.4
MACH 24.97 30.23 34.72 33.49 16.45 3.30

LF-WikiSeeAlsoTitles-320K

SiameseXML 27.05 28.42 30.37 31.3 15.92 1.59
SiameseXML++ 26.82 28.42 30.36 31.97 16.24 1.87
ECLARE 22.01 24.23 26.27 29.35 15.05 13.46
GalaXC 19.77 22.25 24.47 27.87 14.3 1.08
DECAF 16.73 18.99 21.01 25.14 12.86 11.16
Astec 13.69 15.81 17.50 22.72 11.43 4.17
AttentionXML 9.45 10.63 11.73 17.56 8.52 56.12
LightXML 11.34 13.51 15.3 21.93 11.01 159
MACH 9.68 11.28 12.53 18.06 8.99 8.23

LF-AmazonTitles-1.3M

SiameseXML 27.93 31.03 33.00 47.22 36.96 8.6
SiameseXML++ 27.12 30.43 32.52 49.02 38.52 9.89
ECLARE 23.43 27.90 30.56 50.14 40.00 70.59
GalaXC 25.22 29.12 31.44 49.81 40.12 9.55
DECAF 22.07 26.54 29.30 50.67 40.35 74.47
Astec 21.47 25.41 27.86 48.82 38.44 18.54
AttentionXML 15.97 19.90 22.54 45.04 36.25 380.02
MACH 9.32 11.65 13.26 35.68 28.35 60.39

Baselines: Comparisons are presented against leading deep
XML methods such as X-Transformer (Chang et al., 2020a),
ECLARE (Mittal et al., 2021b), GalaXC (Saini et al., 2021),
Astec (Dahiya et al., 2021), MACH (Medini et al., 2019),
DECAF (Mittal et al., 2021a), and AttentionXML (You
et al., 2019), as well as classical methods such as DiS-
MEC (Babbar & Schölkopf, 2017), Slice (Jain et al., 2019),
and Parabel (Prabhu et al., 2018b), etc. X-Transformer,
ECLARE, GalaXC and DECAF are of particular interest
as they make use of label text to improve their predictions.
Implementations provided by respective authors were used
in all cases. All methods were offered a timeout of one
week on a single GPU. Results are also reported for popular
Siamese Networks for ad retrieval such as TwinBert (Lu
et al., 2020) and CDSSM (Huang et al., 2013) on the Q2BP
datasets. Please refer to the supplementary material for
SiameseXML’s hyper-parameter settings.

Evaluation metrics: Performance was evaluated using stan-
dard XML performance measures: precision@k (P@k,
k ∈ {1, 5}) and propensity scored precision@k (PSP@k,
k ∈ {1, 3, 5}). Results on nDCG@k (N@k) and propensity
scored nDCG@k (PSN@k) are presented in the supplemen-

Table 2: Full-text datasets: SiameseXML and Siame-
seXML++ continue to outperform leading deep XML meth-
ods including those that utilize label-text and label-graphs,
such as ECLARE and GalaXC. Results are presented only
for methods that converged within the timeout.

Method PSP@1 PSP@3 PSP@5 P@1 P@5 Training
Time (hr)

LF-Amazon-131K

SiameseXML 37.09 43.27 49.37 44.15 21.73 0.98
SiameseXML++ 37.56 43.69 49.75 44.81 21.94 1.18
ECLARE 34.98 42.38 48.53 43.56 21.57 2.15
GalaXC 35.10 41.18 46.38 41.46 20.25 0.45
DECAF 34.52 41.14 47.33 42.94 21.00 1.80
AttentionXML 32.92 39.51 45.24 42.90 20.97 50.17
Astec 32.95 39.42 45.30 42.22 20.85 3.05
LightXML 30.27 37.71 44.10 41.49 20.75 56.03
MACH 25.27 30.71 35.42 34.52 17.00 13.91

LF-WikiSeeAlso-320K

SiameseXML 28.91 32.67 35.97 40.67 20.96 1.94
SiameseXML++ 29.01 32.68 36.03 42.16 21.35 2.33
ECLARE 26.04 30.09 33.01 40.58 20.14 9.40
GalaXC 25.78 29.37 32.53 38.96 19.58 1.10
DECAF 25.72 30.93 34.89 41.36 21.38 13.40
Astec 23.41 28.08 31.92 40.07 20.36 6.39
AttentionXML 22.67 26.66 29.83 40.50 19.87 90.37
LightXML 17.85 21.26 24.16 34.50 16.83 249.00
MACH 13.11 15.28 16.93 27.18 12.89 50.22

tary material which also contains the definitions of all these
metrics. All training times are reported on a 24-core Intel
Xeon 2.6 GHz machine with a single Nvidia V100 GPU.
However, Q2BP datasets were afforded multiple GPUs.

Offline results: Tables 1 and 2 present results on bench-
mark datasets for short- and full-text XML tasks where
SiameseXML could be 2–13% more accurate than meth-
ods which make use of label meta-data, viz. ECLARE,
GalaXC, DECAF and X-Transformer in propensity scored
precision. This indicates that SiameseXML’s gains are more
prominent on rare labels which are more rewarding in real-
world scenarios. SiameseXML could also be up to 2–68×
faster at training than DECAF, ECLARE and X-Transformer.
Moreover, SiameseXML was found to be 2–13% more ac-
curate than Astec, AttentionXML, and MACH indicating
that SiameseXML can be more accurate and simultaneously
faster to train as compared to leading deep extreme classi-
fiers. Moreover, SiameseXML could also be up to 2% more
accurate in vanilla precision as compared to the second best
method. Table 5 includes a qualitative analysis of Siame-
seXML’s predictions. SiameseXML could also be up to
17% more accurate than leading XML methods with fixed
features including Parabel, DiSMEC, Bonsai, and Slice
(Please refer to the supplementary material). Results are
also reported for SiameseXML++ that jointly trains token
embeddings E in Module IV as well and offers moderate
improvements over SiameseXML. Table 3 demonstrates that
SiameseXML could be 10–30% more accurate than lead-
ing XML techniques that could scale to the Q2BP datasets.

http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf
http://manikvarma.org/pubs/dahiya21b-supp.pdf

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

Table 3: User query to advertiser bid-phrase prediction:
SiameseXML could be significantly more accurate than
leading extreme classifiers as well as Siamese architectures
including TwinBert and CDSSM.

Method PSP@1 PSP@3 PSP@5 P@1 P@3 P@5

Q2BP-100M

SiameseXML 74.82 84.28 87.36 80.84 40.33 26.71
TwinBert 60.76 66.58 69.37 61.54 30.51 20.42

Q2BP-40M

SiameseXML 58.86 66.44 70.59 70.33 48.13 37.38
TwinBert 52.44 55.13 56.43 57.69 41.53 33.2
CDSSM 43.41 42.57 42.83 48.6 32.29 25.19
Parabel 36.04 41.52 44.84 47.71 36.64 30.45

Q2BP-4M

SiameseXML 67.24 72.82 76.03 69.53 38.58 27.12
CDSSM 44.95 48.19 50.78 45.58 24.62 17.38
Astec 57.78 69.16 73.84 66.39 37.35 26.52
SLICE+CDSSM 47.41 59.52 65.89 54.77 33.15 24.11
Parabel 55.18 66.08 71.21 61.61 36.36 26.01

Most existing techniques could not scale to 100 million la-
bels whereas SiameseXML could be trained within 2 days
on 6× Nvidia V100 GPUs. SiameseXML was also found to
be 6–21% more accurate than Siamese networks including
TwinBert and CDSSM on the Q2BP datasets. This demon-
strates that SiameseXML can scale to datasets with 100M
labels while still being more accurate than both Siamese
networks and extreme classifiers.

Online live deployment: SiameseXML was deployed on
the Bing search engine to perform A/B tests on live search
engine traffic for matching user entered queries to advertiser
bid phrases (Q2BP) and was compared to an ensemble of
leading (proprietary) information retrieval, XML, generative
and graph based techniques. Performance was measured
in terms of Click-Yield (CY), Query Coverage (QC), and
Click-Through Rate (CTR). Click Yield (CY) is defined as
the number of clicks per unit search query (please refer to
the supplementary material for details). SiameseXML was
found to increase CY and CTR by 1.4% and 0.6%, respec-
tively. This indicates that ads surfaced using the proposed
method are more relevant to the end user. Additionally,
SiameseXML offered higher QC by 2.83%, indicating its
ability in surfacing ads for queries where ads were previ-
ously not shown. Further, human labelling by expert judges
was also performed. A random set of (query, predicted
bid-phrase) pairs from various algorithms was presented to
judges who labeled each pair as good or bad. SiameseXML
could increase the fraction of good predictions by 11% over
state-of-the-art in-production techniques.

Ablations: The aim of ablation experiments was to inves-
tigate SiameseXML’s design choices in Modules I, II, and
III. First, the sampling strategy must find a right balance be-
tween popular labels and data-scarce tail labels (See Fig. 2

Table 4: Impact of incrementally adding components, i.e.,
label embedding (fÊ(zl)), label centroids (vl) and label
classifiers wl on the LF-WikiSeeAlsoTitles-320K dataset.

Components P@1 Recall@500

fÊ(zl) 27.6 57.66
{fÊ(zl),vl} 28.03 63.74
SiameseXML 31.3 63.74

Table 5: SiameseXML’s predictions for the data point “List
of Go players” from LF-WikiSeeAlsoTitles-320K are more
accurate than leading methods. Mispredictions in light gray.

Method Predictions

SiameseXML Go professional, List of Go organizations,
List of top title holders in Go, Go ranks and
ratings, List of professional Go tournaments

DECAF Go players, List of Go organizations, Music
of the Republic of Macedonia, Players,
List of all-female bands

AttentionXML List of NHL players, List of professional Go
tournaments, List of foreign NBA players,
List of chess grandmasters, List of Israeli
chess players

for results with various sampling distributions). Second,
label shortlists in Module-II (N̂i) could be up to 4% and
10% more accurate than the shortlist computed solely based
on label embeddings (N̂ z

i) in terms of precision and recall
respectively (see Table 4) with comparatively larger gains on
large datasets. This demonstrates that the label text by itself
may not be as informative for some labels and using multi-
ple representations for each label can lead to performance
gains, especially in short-text applications. As noted earlier,
Lemma 1 shows that Module I itself yields a fully functional
classifier model with bounded sub-optimality. Thus, in prin-
ciple, SiameseXML could stop training after Module-I and
use the label text embeddings as classifiers along with the
label shortlist N̂ z

i to make final predictions. However, this is
sub-optimal and training an extreme classifier in Module-III
can lead to 2-6% more accurate predictions with compara-
tively larger gains on larger datasets indicating the utility of
extreme classifiers (see Table 4).

Acknowledgements
The authors thank the anonymous reviewers for several
helpful comments. The authors also thank Anshul Mittal and
Praneeth Netrapalli for helpful discussions and feedback.
Thanks are due to Kushal Dave, Prasenjit Dey for their help
in creating the Q2BP datasets and running the A/B tests.
KD thanks support from Microsoft Research India.

http://manikvarma.org/pubs/dahiya21b-supp.pdf

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

References
Agrawal, R., Gupta, A., Prabhu, Y., and Varma, M. Multi-

label learning with millions of labels: Recommending
advertiser bid phrases for web pages. In WWW, 2013.

Babbar, R. and Schölkopf, B. DiSMEC: Distributed Sparse
Machines for Extreme Multi-label Classification. In
WSDM, 2017.

Babbar, R. and Schölkopf, B. Data scarcity, robustness and
extreme multi-label classification. Machine Learning,
108, 2019.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. Spectrally-
normalized margin bounds for neural networks. In NIPS,
2017.

Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P. Sparse
Local Embeddings for Extreme Multi-label Classification.
In NIPS, December 2015.

Bhatia, K., Dahiya, K., Jain, H., Kar, P., Mittal, A., Prabhu,
Y., and Varma, M. The Extreme Classification Repos-
itory: Multi-label Datasets & Code, 2016. URL http:
//manikvarma.org/downloads/XC/XMLRepository.html.

Chang, W.-C., H.-F., Y., Zhong, K., Yang, Y., and Dhillon,
I.-S. Taming Pretrained Transformers for Extreme Multi-
label Text Classification. In KDD, 2020a.

Chang, W.-C., Yu, F.-X., Chang, Y.-W., Yang, Y., and Ku-
mar, S. Pre-training Tasks for Embedding-based Large-
scale Retrieval. In ICLR, 2020b.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, 2020.

Dahiya, K., Saini, D., Mittal, A., Shaw, A., Dave, K., Soni,
A., Jain, H., Agarwal, S., and Varma, M. DeepXML: A
Deep Extreme Multi-Label Learning Framework Applied
to Short Text Documents. In WSDM, 2021.

Faghri, F., Fleet, D.-J., Kiros, J.-R., and Fidler, S. Vse++:
Improving visual-semantic embeddings with hard nega-
tives. In BMVC, 2018.

Golowich, N., Rakhlin, A., and Shamir, O. Size-
Independent Sample Complexity of Neural Networks.
In COLT, 2018.

Guo, C., Mousavi, A., Wu, X., Holtmann-Rice, D.-N., Kale,
S., Reddi, S., and Kumar, S. Breaking the Glass Ceil-
ing for Embedding-Based Classifiers for Large Output
Spaces. In NeurIPS, 2019.

Harwood, B., B.-V., K., Carneiro, G., Reid, I., and Drum-
mond, T. Smart mining for deep metric learning. In ICCV,
2017.

He, K., Fan, H., W., Y., Xie, S., and Girshick, R. Momentum
contrast for unsupervised visual representation learning.
In CVPR, 2020.

Huang, P. S., He, X., Gao, J., Deng, L., Acero, A., and Heck,
L. Learning Deep Structured Semantic Models for Web
Search using Clickthrough Data. In CIKM, 2013.

Jain, H., Prabhu, Y., and Varma, M. Extreme Multi-label
Loss Functions for Recommendation, Tagging, Ranking
and Other Missing Label Applications. In KDD, August
2016.

Jain, H., Balasubramanian, V., Chunduri, B., and Varma, M.
Slice: Scalable Linear Extreme Classifiers trained on 100
Million Labels for Related Searches. In WSDM, 2019.

Jasinska, K., Dembczynski, K., Busa-Fekete, R.,
Pfannschmidt, K., Klerx, T., and Hullermeier, E. Ex-
treme F-measure Maximization using Sparse Probability
Estimates. In ICML, 2016.

Jiang, T., Wang, D., Sun, L., Yang, H., Zhao, Z., and Zhuang,
F. LightXML: Transformer with Dynamic Negative Sam-
pling for High-Performance Extreme Multi-label Text
Classification. In AAAI, 2021.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. Bag
of Tricks for Efficient Text Classification. In EACL, 2017.

Khandagale, S., Xiao, H., and Babbar, R. Bonsai - Diverse
and Shallow Trees for Extreme Multi-label Classification.
CoRR, 2019.

Kingma, P. D. and Ba, J. Adam: A Method for Stochastic
Optimization. In ICLR, 2015.

Liu, J., Chang, W., Wu, Y., and Yang, Y. Deep Learning for
Extreme Multi-label Text Classification. In SIGIR, 2017.

Long, P. M. and Sedghi, H. Generalization bounds for deep
convolutional neural networks. In ICLR, 2020.

Lu, W., Jiao, J., and Zhang, R. TwinBERT: Distilling Knowl-
edge to Twin-Structured Compressed BERT Models for
Large-Scale Retrieval. In CIKM, 2020.

Luan, Y., Eisenstein, J., Toutanova, K., and Collins, M.
Sparse, Dense, and Attentional Representations for Text
Retrieval. Transactions of the Association for Computa-
tional Linguistics, 9:723–729, 2020.

Malkov, A. Y. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using Hierarchical
Navigable Small World graphs. CoRR, 2016.

Medini, T. K. R., Huang, Q., Wang, Y., Mohan, V., and Shri-
vastava, A. Extreme Classification in Log Memory using
Count-Min Sketch: A Case Study of Amazon Search with
50M Products. In NeurIPS, 2019.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

SiameseXML: Siamese Networks meet Extreme Classifiers with 100M Labels

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. Distributed Representations of Words and Phrases and
Their Compositionality. In NIPS, 2013.

Mineiro, P. and Karampatziakis, N. Fast Label Embeddings
via Randomized Linear Algebra. In ECML/PKDD, 2015.

Mittal, A., Dahiya, K., Agrawal, S., Saini, D., Agarwal, S.,
Kar, P., and Varma, M. DECAF: Deep Extreme Classifi-
cation with Label Features. In WSDM, 2021a.

Mittal, A., Sachdeva, N., Agrawal, S., Agarwal, S., Kar, P.,
and Varma, M. ECLARE: Extreme Classification with
Label Graph Correlations. In WWW, 2021b.

Niculescu-Mizil, A. and Abbasnejad, E. Label Filters for
Large Scale Multilabel Classification. In AISTATS, 2017.

Prabhu, Y. and Varma, M. FastXML: A Fast, Accurate and
Stable Tree-classifier for eXtreme Multi-label Learning.
In KDD, August 2014.

Prabhu, Y., Kag, A., Gopinath, S., Dahiya, K., Harsola, S.,
Agrawal, R., and Varma, M. Extreme multi-label learning
with label features for warm-start tagging, ranking and
recommendation. In WSDM, 2018a.

Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., and Varma, M.
Parabel: Partitioned label trees for extreme classification
with application to dynamic search advertising. In WWW,
2018b.

Prabhu, Y., Kusupati, A., Gupta, N., and Varma, M. Extreme
Regression for Dynamic Search Advertising. In WSDM,
2020.

Saini, D., Jain, A., Dave, K., Jiao, J., Singh, A., Zhang, R.,
and Varma, M. GalaXC: Graph Neural Networks with
Labelwise Attention for Extreme Classification. In WWW,
2021.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
CVPR, 2015.

Tagami, Y. AnnexML: Approximate Nearest Neighbor
Search for Extreme Multi-label Classification. In KDD,
2017.

Wei, C. and Ma, T. Data-dependent Sample Complexity of
Deep Neural Networks via Lipschitz Augmentation. In
NeurIPS, 2019.

Wu, C.-Y., Manmatha, R., Smola, A.-J., and Krahenbuhl,
P. Sampling Matters in Deep Embedding Learning. In
ICCV, 2017.

Wydmuch, M., Jasinska, K., Kuznetsov, M., Busa-Fekete,
R., and Dembczynski, K. A no-regret generalization of
hierarchical softmax to extreme multi-label classification.
In NIPS, 2018.

Xiong, L., Xiong, C., Li, Y., Tang, K.-F., Liu, J., Bennett, P.,
Ahmed, J., and Overwijk, A. Approximate nearest neigh-
bor negative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808, 2020.

Xu, C., Tao, D., and Xu, C. Robust Extreme Multi-label
Learning. In KDD, 2016.

Ye, H., Chen, Z., Wang, D.-H., and Davison, B. D. Pre-
trained Generalized Autoregressive Model with Adaptive
Probabilistic Label Clusters for Extreme Multi-label Text
Classification. In ICML, 2020.

Yeh, C. K., Wu, C. W., Ko, J. W., and Wang, F. C. Y. Learn-
ing Deep Latent Spaces for Multi-Label Classification.
CoRR, 2017.

Yen, E. I., Huang, X., Zhong, K., Ravikumar, P., and
Dhillon, I. S. PD-Sparse: A Primal and Dual Sparse
Approach to Extreme Multiclass and Multilabel Classifi-
cation. In ICML, 2016.

Yen, E. I., Huang, X., Dai, W., Ravikumar, P.and Dhillon, I.,
and Xing, E. PPDSparse: A Parallel Primal-Dual Sparse
Method for Extreme Classification. In KDD, 2017.

You, R., Dai, S., Zhang, Z., Mamitsuka, H., and Zhu, S.
AttentionXML: Extreme Multi-Label Text Classification
with Multi-Label Attention Based Recurrent Neural Net-
works. In NeurIPS, 2019.

Yu, H., Jain, P., Kar, P., and Dhillon, I. S. Large-scale Multi-
label Learning with Missing Labels. In ICML, 2014.

Zhang, T. Statistical Analysis of Some Multi-Category
Large Margin Classification Methods. Journal of Ma-
chine Learning Research, 5:1225–1251, October 2004.

	Introduction
	Related Works
	The SiameseXML Framework
	Implementation Details
	Generalization Bounds
	Experiments

